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Abstract. It is shown that in general the underlying mathematical structure of the system 
of equations which describe the static equilibrium of an ideally conducting charged fluid, 
in the magnetohydrodynamic approximation, depends upon the orthogonal group O(3) 
and the geometry of a non-flat three-dimensional Riemannian space having a constant 
positive curvature with the exact value of 4. 

An important mathematical device in this study has been a generalised covariant 
derivative which describes the pseudo-parallel displacement of a vector field in a non-flat 
geometry relative to a coordinate system in a flat space. 

1. Introduction 

The static equilibrium of an ideally conducting charged fluid, in the magnetohydrody- 
namic ( M H D )  approximation, is described by the system of equations 

j x B = V P  j = V x B  V . B = O  (1.1) 

where j is the current density, B is the magnetic induction and P the hydrodynamic 
pressure. 

These equations have so far presented considerable difficulties in their analysis and 
few exact solutions, which describe systems of interest, have been published (e.g. Laing 
et a1 1959, Woolley 1977). The work to be presented here is the first part of a study 
in which it will be shown that the above equations are in fact amenable to analysis in 
a flat three-dimensional Euclidean geometry of the kind relevant to systems of physical 
interest. 

In general the calculations are not simple; but it is found that the equations and 
their solutions (at least, those obtained so far) have some interesting properties. 

The first step in the analysis of the equations (1.1) is to find the conditions under 
which the magnetic induction B can be written in the form 

B = V a x V P  (1.2) 

for scalar functions a and P, in a flat geometry. Some of the results of that investigation 
are presented in what follows. 

t Postal address: 96 Highdown Road, Hove BN3 6EA, UK. 
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2380 M L Woolley 

2. The integrability conditions 

In the following work we shall use a covariant formalism in which tensor components 
are labelled with Greek indices whereas vectors are themselves labelled with the aid 
of latin indices. 

We consider the equilibrium equations in the covariant form 

v p Y J ‘ B u  = P, j ”  = ~ F u u B u ~ v  B“, ,  = O  (2.1) 
where v,’yo is the covariant permutation tensor and covariant differentiation is with 
respect to the metric tensor g,, of a three-dimensional flat elliptic space. So gPy is a 
solution of 

RPyuT = 0 (2.2) 
where RyYur is the mixed curvature tensor. 

conditions are necessary for systems which have physical significance. 

p according to 

Strictly speaking, gWy can be any locally elliptic metric tensor; but the above 

If we represent the magnetic induction B @  in terms of potential functions a and 

B’ = T ] ~ ” ~ ~ , P ,  (2.3) 
we have the set {a,, P,, B,} of linearly independent vectors in terms of which the 
metric tensor has the decomposition 

1 
g,, = ~ ~ P ‘ P u a , ~ , . - ~ “ P U ~ a , P ” + ~ ~ P , ~ + ~ “ ~ u P ” P . + B , ~ ” ~  (2.4) 

where A = B“B,. 
By now making the identification: 

1 2 3  
{a,, P,., Bp}= {a,, a,, a,} 

I 

and representing the covariant derivatives aFI, in the form 
I m n  

Q’I. = HA,a,a, (2.6) 
we can determine the equations which the coefficients HAn must satisfy in order that 
the following conditions are met: 

(i) B”, a,  and p ,  are related by (2.3); 
(ii) the equilibrium equations (2.1) are all satisfied; 
(iii) covariant differentiation must commute to ensure the integrability of (2.6) in 

a flat geometry. 
In the first instance, the most important of these conditions is (iii). Essentially it 

guarantees the existence of a coordinate system in terms of which the M H D  equilibrium 
can be described. We find that this gives the system of equations 

A ~ +  - ATulu = AYCA’,, - AEA’,u (2.7) 
where 

The equations (2.7) are equivalent to the condition (2.2) that the mixed curvature 
tecsor must be identically zero in a flat space. 
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Now, by taking condition (i) into account, and requiring a, and P, to be gradient 
vectors, a lengthy calculation gives the equations (2.6) as 

In addition, the equations (2.7) are found to be equivalent to 

(TI u,+v,=- 
1 -U2’ 

Here we have defined 

(2.10) 

(2.11) 

{ P, 0, RI= (Jabs", Jp,p”, f i l  
while U = cos 8, with 8 the angle between a ” and p ”. Note that in the case where the 
basis triad in (2.1 1 )  is orthonormal, i.e. U = 0, the equations (2.9) can be written quite 
simply in the form 

f @ l u  = EmnrfFe” 
m n ‘  

while (2.10) can correspondingly be written as 

(2.12) 

where 

{f,,f,,f,}={-b,, a,,  c,} (2.14) 

Cf,, ,e,, :,I= {t,, l,, U,} (2.15) 

U, =-U, (2.16) 

and E,,, is the Cartesian permutation symbol. 
The significance ofthe equations (2.12) and (2.13) is threefold. Firstly, the equations 

(2.13) are integrable and are themselves the integrability conditions for (2.12). So a 
solution set { e , }  of vectors satisfying (2.13) allows (2.12) to be integrated and provides 
the set of ba$is vectors in (2.11). 

1 2 3  
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Secondly, the integrability of (2.13) guarantees that of a set of infinitesimal transfor- 
mations (see the concluding section for a brief discussion) which allow the invariant 
functions a and p to be determined and the equilibrium conditions (2.1) to be satisfied. 

Thirdly, we find that (2.12) and (2 .13)  are the canonical forms of the respective 
equations (2.9) and (2.10) and that, so far as those equations are concerned, the 
function w is subject only to the condition IwI S 1 .  In order to prove this last assertion, 
we define the two sets of vectors { M,} and { N,}, for i = 1 , 2 , 3 ,  by 

I I 

(2.17) 

(2.18) 

Then, if we add the relation 

N,+M,=* (2.19) 
2 3 J G 2  

it is not difficult to show that the {M,} and the {N,} are both solution sets of (2.13). 
Suppose that we have explicitly dbtained the set'{M,} as a solution of (2 .13) ,  we have 

5, = M, cos e + M, sin e 5, = y, 2 

U, = M, cosec e U, = -elr cosec e - U, 
3 

(2.20) 

as a solution set of (2.10) if U # 0 is defined by w = cos 8 where 0 can be any function 
of position. 

The second solution set { N,} is then also determined because the relation between 
the solution sets is found to be 

N, = M ,  sin e - M, cos e N, = -yp - elp 
1 2 3 2 

N,  = M, COS e +  M ,  sin e (2.21) 

and this is an invariance transformation of (2.13) for any choice of 8. Now, the 
equations (2.9) can firstly be written in the form 

(2.22) 
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and secondly as 

The system (2.22) is equivalent to (2.12) for the solution set 

(2.23) 

(2.24) 

determined by the solution set { M , }  of (2.13), as given in (2.17), while the system 
(2.23) is equivalent to (2.12) for the solution set 

(2.25) 

determined by the solution set {y,} of (2.13), as given in (2.18). Finally, it is not 
difficult to show that the two solution sets (2.24) and (2.25) of (2.12) are related by 
an invariance transformation of those equations, which is a consequence of (2.21). 

Thus, either of the transformations (2.17) or (2.18) allows a solution set { e , }  of 
the equations (2.13), in which u=O, to determine firstly the corresponding set 
{t,, l,, U , ,  U,} of vectors satisfying (2.10), with a # 0 subject only to the condition 
lals 1 to ensure that the angle 8 between a” and P ”  is real. Secondly, we find that 
either of the solution sets in (2.17) or (2.18) provides a corresponding basis triad, 
through (2.12) together with either of (2.24) or (2.25), in which U determines the angle 
between a” and p as a function of position. 

The relation (2.211, between (2.17) and (2.18), is a special case of a class of 
invariance transformations of (2.13) which will be given in the next section. 

It follows that the essential properties of our equations depend upon those of 
(2.13); and those are the subject of the following work. In the next section we shall 
first obtain one of the groups of symmetry transformations which (2.13) admits and 
then show how those can be used to obtain solutions of the equations by means of a 
generation procedure which employs a class of invariance transformations. 

1 

3. The orthogonal group O(3) 

We can establish the following result. 

Theorem 1 .  When the vectors { e , } ,  satisfying (2.13), are linearly independent they 
determine a set of generators for‘the orthogonal group O(3). 
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ProoJ: Define the set of vectors { A’Ii = 1,2,3} by 
I 

(3.1) 

where 

k = v’”ufpfyp. (3.2) 

Then it is not difficult to obtain the following pair of results: 

(3.3) 

(3.4) 

1 
v,vu~“Au = - k E ‘JnnCI e 

1 1  

9 e p  = Acr(e,Iu - euj,) + (A“e,)l, = k v , + ” ~ ”  
1 1  ’ J I 1 1  

where 9 represents Lie differentiation with respect to A”. With these two results we 
finally dbtain 

I 

and this is the Lie algebra of the orthogonal group O(3). 0 

The finite transformations of the orthogonal group O(3) can be represented by 
matrices Fm, which are determined by the integrable equations 

and can be normalised to obey 

By observing that e+ and A’ satisfy 
I I 

we obtain 

The orthogonality of the F,,,,, together with the properties of the E,,,, then give the 
next result. 

Theorem 2. A solution set { e , }  of the equations (2.13) is given by 
I 

(3.10) 
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It is not difficult to show that the corresponding solution of (2.12) is given by 

(3.11) 

where the {T , }  is a set of covariant-constant vectors with respect to the metric 
tensor gFV.  

j 

Finally, for the purpose of conserving space, we shall state without proof the easily 
verified results. 

Theorem 3. If I?, =~E~, ,~F, , , , ,~ ,F , ,~ ,  and e, is any other solution of (2.13), then so is 5, I 
given by 

(3.12) 

I I 

t?, = e r e ,  + I?,. 
I J  I 

Theorem 4. If f, is the solution of (2.12) determined by c?,, then the solution f, 
corresponding to i, is given by 

m m 

7, =fpFnm. 
m n  

As an example of theorem 3, if we take Fmn to be the matrix ( si; 8 -; co; 8 )  
Fm,= -cos 6 0 sin 8 

(3.13) 

then !p = ~ E ~ ~ ~ F ~ ~ ~ ~ F ~ ~  is found to be a solution of (2.13), with 8 an arbitrary function, 
and the relation (2.21) is obtained from (3.12) if the known solution set { e , }  is taken 
to be { M , } .  Further invariance transformations of the equations (2.13i which are 
directly irelated to the problem of M H D  equilibrium, together with other classes of 
solutions, will be discussed at a later date. 

For the rest of the present work we shall obtain an interesting result which follows 
from the proof of theorem 1; but in order to do that it is first necessary to develop the 
theory of a generalised covariant derivative which has turned out to be an invaluable 
device for obtaining results. 

4. The relative covariant derivative 

Let r$ be the connection of a system of curvilinear coordinates { x ” }  in a flat space 
having metric tensor gPy.  Then the covariant derivative v*lv of the vector field U* is 
given by 
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Let a,” be a non-singular symmetric tensor in the space of the g,, and let the symmetric 
tensor bp” satisfy 

bwua,,2 = St. (4.2) 

A’“, =tbPT(avTl ,+ aUTiv - %+> (4.3) 

U,.” = V ~ I ,  + A p v o ~ u .  (4.4) 

It is not difficult to verify that this derivative obeys all of the axioms required of a 
covariant derivative. In fact, (4.4) does przcisely describe covariant differentiation in 
the space that has the linear connection T k , = r ~ u + A L L y u ;  but here the operation is 
with respect to the connection r:, of the metric tensor g,“. As an example, note that 
generally g,’v.u # 0 is given by 

We then calculate the mixed tensor A’”, according to 

and define the generalised covariant derivative U,.” of the vector field U@ by 

g,,.,= -ATu,gTY -ArvYgT,. (4.5) 

So, to lower the index in (4.4) we have 

which agrees with 

f:,=r$+A~”,. (4.7) 

A metric tensor for the space with connection 
of (4.3), that satisfies 

is found to be a,, since, by virtue 

spy., = 0 bFY. ,  = 0 (4.8) 

and it is precisely this interpretation of the role of allY which is of relevance for the 
main result of this paper. 

Some particularly useful results, which are easily proved, are the following. 
(1) 

U,. Y = f ( U, I Y - U”1,) + tp, Y (4.9) 

where U, = bFUu,. So the vector d’ generates an invariance transformation of the 
non-singular symmetric tensor a,, if and only if the vector U, = a,,uU satisfies 

U,.,+ UY., = 0 (4.10) 

where our derivative is calculated using a,, as prescribed in (4.4). 

2 a r u  = 0, for some U”, we have with (4.9): 
(11) If 6, is an arbitrary vector, and a,, is a non-singular symmetric tensor satisfying 

U 

(4.11) 

.. 
where 6” = bp‘“t,. 

But 

(4.12) 
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Thus 
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(4.13) 

2( b ”“tu ) = b p“2.$u gives at,.”) = (a,).”. (4.14) 

So Lie differentiation with respect to a generator of an invariance transformation of 
a non-singular symmetric tensor a,, commutes with our derivative when that is 
calculated using a,” as prescribed in (4.4). 

(111) A corollary of (11) is found to be 

U U 

q r g i  A,”J = 0. (4.15) 
U 

So 2a,“ = 0 requires U ”  to generate an affine motion in the space which has the 
connection r fu .  

The fundamental geometry of the spacejn which a,, can be regarded as a metric 
tensor is described by its curvature tensor Rwuu7 given by 

U A 

On substituting fCu = r:u + A, into this, we obtain 

kpyuT = RClyuT + T,’,,,, 

(4.16) 

(4.17) 

where Rwvu7 = 0 is the curvature tensor calculated with the flat space connection r$, 
while 

(4.18) TFLVUT = ACLy+ - A F y u ~ T  + A’puApyr- A c L p J p Y u  

where covariant differentiation is with respect to gpP. 
Thus, a,, can be regarded as a metric tensor in the space which has 

A 

Rpuu7 = TPYu7 (4.19) 

for its mixed curvature tensor. 
Note that when a,, is not a solution of 

TFwu7 = 0 (4.20) 

the curvature tensor kpYuT will not describe a flat geometry and, in particular, if the 
vector field U’’ is displaced, according to 6vp = U’*., dx“ = 0, around an infinitesimal 
parallelogram, with sides given by U ”  ds  and w“  df, for some independent vectors U ”  
and w”, it will undergo the infinitesimal change 

(4.21) AV’” = -kp,,,,v’’uuwr ds dt. 

So the differentiation described by (4.4) does not generally commute and we have 

V, .uu-  vp.u” = vrT7”v“* (4.22) 

It follows that the equations uy.,uL’ = 0 will in general describe a non-parallel displace- 
ment of the vector field u’I from the point of view of the coordinate system of the gFV. 
On the other hand, those equations do describe a pseudo-parallel displacement of the 
u p  with reference to coordinates in the space which has the connection r”Zw + 
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So we have a geometrical interpretation of the derivative defined by (4.4) as describing 
a non-parallel displacement in the space of the metric tensor gLlY which is equivalent 
to a pseudo-parallel displacement in the space in which the a,, can be regarded as a 
metric tensor. In fact, taking into account the relation (4.17) between TClyrri and the 
two curvature tensors, we see that the displacement in the space of the a,, is relative 
to that in the space of the g,,,,. This viewpoint is justified by imagining the g,, to be 
a tensor in the space of the a,, and constructing the equivalent of (4.4) in that space. 
On using g,,.,, as given in (4.5), we obtain 

*Allyc = f g ~ T ( g Y i . , + g u i . . - g , , . . )  = (4.23) 

and subsequently 
*TW’,,,= * A ~ , , . , - * A ~ ~ , . , + * A ~ p u * A p y ~ - * A c l p + * A p y u  ( 4 . 2 4 ~ )  

gives 

* TwyuT = - TpyU7.  (4.246) 

So the parallel displacement in the Bat space of the gFV is then described relative to 
coordinates in the space of the a,”. We shall therefore henceforth describe the derivative 
U,.” as ‘the covariant derivative of the vector field U” with respect to the symmetric 
tensor a,, relative to the metric tensor g,,’, or ‘the relative covariant derivative’ for short. 

5. The geometry of the integrability conditions 

In the proof of theorem 1 we found the two vectors e, and A” which satisfy 
I I 

It follows that the two symmetric tensors 

are related by 

bpuau, = St. 
In addition, it is seen that 

(5.3) 

+?a,“ = 0. (5.4) 

So, according to (4.15), the orthogonal group generator A“ describes an affine motion 
in the space which has for its connection I 

F ; , = r ; u + A ~ u u  ( 5 . 5 )  
where ApVu is given by (4.3). 

It is clear from (5.2) that the geometry of the space with connection ptu is directly 
a consequence of the integrability conditions (2.13). In order to describe this geometry 
more precisely, we first calculate the AFy, ,  using (2.13), and obtain 

A,”, = t A p ( e y ~ u  I t  + ~ 1 . 1 .  (5 .6 )  

On substituting this into the mixed curvature tensor given by (4.18) and (4.19), 
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a lengthy calculation finally gives 

This shows that the symmetric tensor a,, can be regarded as a metric tensor for a 
non-flat Riemannian space of three dimensions (an S3 precisely) having a constant 
curvature with the exact value of a ,  Such a space can be imagined as being analogous 
to the surface of a familiar sphere, but having three mutually perpendicular directions 
at any point, instead of two, and requiring a Euclidean space of at least four dimensions 
for its geometrical construction-as compared with the three dimensions for the sphere 
of everyday experience. 

This result has a number of interesting consequences for the theory of M H D  

equilibrium systems. In particular we have the following. 
( I )  The S,  is equivalent to the configuration space of a dynamical system; it is not 

the flat space in which the equilibrium is supposed to exist. However, it can be 
transformed conformally into the flat space of the g F Y ;  in other words, the S3 is 
conformally flat. This means that for a given a,, we can find a flat metric tensor y," 
together with a function cp such that 

kfiyUT = :(6:a,, - Sya,,). (5 .7)  

2* a , , = e  Y,". ( 5 . 8 )  
The function cp is determined by the equations (5 .7)  subject to the condition that the 
curvature contribution due to ypU vanishes. A special case of this is obtained by 
choosing yFY to be the coordinate metric tensor gpY.  Then the equations for p are 
found to be the integrable system 

cp = - a  e2'F - Ho e* 
c p y c p y  = 2H0 e' - a  e'* 

9,;" = (PPcp" - Ho e*g," 

(5 .9)  

where Ho is an arbitrary constant (not negative or zero). 
In this case it is not difficult to show that the vector v, given by 

m 

where 

is a Killing vector for gp, and that B p ,  given by 
m 

B' = ( up / A )  F( w ) + ( 1 / A )  v f iUuw/  .tu 
m m m  m 

( 5 . 1 1 )  

is the magnetic induction for a force-free M H D  equilibrium system when F ( w )  is 
arbitrary and the function w is determined by the equation 

( w i u /  A),, + 2cF/ A'+ FF'/ A = 0.  (5.12) 
m m m 

Here ; = vuvu, 2c = ~ p y u , u p , u y ~ u  (not summed over m )  is a constant and F'=  dF/do .  
This result is a special case of a more general relation between the isometry group of 
the metric tensor g,, and M H D  equilibria which is mentioned briefly in the concluding 
section. 

m m  
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(11) It can be shown that in satisfying the equilibrium equations (2.1) in the general 
case, the magnetic induction B p  is related to the invariant functions CY and p through 
an invariance transformation of the equations (2.10). 

When the hydrodynamic pressure P only depends on one of the invariants CY or p 
(corresponding to the physically relevant toroidal case) the transformation is precisely 
between solution sets of the integrability conditions (2.13) and is therefore a direct 
transformation of the metric tensor a,, of the S , .  

(111) The S,  also admits a group of projective motions and, since any Riemannian 
metric is determined up to a scalar factor by its conformal and projective symmetries 
together, we might expect those transformations to play a role in fixing the geometry 
of an equilibrium through the integrability conditions (2.13) (the solutions of (2.13) 
and the geometry of the magnetic induction in an equilibrium system are related by 
a set of infinitesimal transformations which are given and discussed briefly in the 
concluding section). 

Finally, we can mention some further results which use the relative covariant 
derivative with respect to a&,, and which have applications in the solution of the 
integrability conditions. 

( I )  The linearly independent vectors satisfying (2.13) are given by the integrable 
equations 

e p . v  = i & m r , e p e u  (5.13) 
m r ,  

(11) The equations 

W,.” = - awa,” (5.14) 

are integrable and provide a set { w ! }  of scalar functions w, which act as natural 
coordinates for the solutions of the integrability conditions (2.13). 

(111) The equations 

5” *, = -$ws::  (5.15) 

are integrable and give the set {5”15’ = bYrrw,} of vectors which determine the generators 
I ,  , 

(5.16) 

of another group of invariance transformations of up” which has the Lie algebra 

(5.17) 

where the cmp is a symmetric matrix of arbitrary constants. 
A relevant point here, which remains to be studied, is that the maximum order of 

the group of motions of an S ,  is exactly 6. So it might well be that (3.5) and (5.17) 
give the Lie algebras of subgroups of the same group. 

In any event, the existence of symmetry groups of a,, provides a starting point for 
the study of the solution classes of the integrability conditions (2.13) and, possibly, a 
classification of M H D  equilibrium systems. 
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The results presented so far have all been obtained on the basis of the assumption 
that the solution vectors ,ep of (2.13) are linearly independent and, for the sake of 
completeness, it is necessary to include the special case in which the ,e, are linearly 
dependent. 

6. The case of linear dependence 

When the 
the general form 

satisfying (2.13), are linearly dependent it is found that they must have 

(6.1) 

where the X '  and X' are arbitrary independent functions of the xi', X h  and X :  are 
gradient vectors and the e,! and e,? are functions of X '  and X' only which are 
determined by (2.13) in thk form 

pp = e . 1 ~ :  + ex2Xp 2 

I 

I 

The symmetric tensor 

in this case determines the metric form for a Riemannian space of at most two 
dimensions in which XI and X 2  act as local coordinates. If we define the vector ep 
in that space by 

I 

it is possible to obtain the following results. 
( I )  The metric tensor is given by 

a,, = e e 
l l ' l "  

where Greek indices now take values in {1,2}. 
(11) The curvature tensor is given by 

RPuu7 = KTpvTu7 

where 

K = t ~ m n r 7 7 v r ~ t n ~ n l u ~ r l T  

( 6 . 6 ~ )  

(6.6b) 

un = ~"'eul.  ( 6 . 6 ~ )  

while 77 l"  is the contravariant permutation tensor and covariant differentiation is with 
respect to spy. 

(111) The U,, satisfy the integrable equations 
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It is found that these geometries in particular allow the M H D  equilibrium conditions 
to be solved and such solutions will be discussed at a later date. 

It is worth mentioning that the linearly dependent solutions of (2.13) appear to be 
related to an invariant of the magnetic induction which does not occur so readily when 
the e, are independent. The precise distinction between the two classes of solution 
of (2.13)-in respect of resulting M H D  equilibria-remains to be studied. 

m 

7. Conclusions 

The essence of the work which has been presented here is that if the magnetic induction 
B ,  in an equilibrium system is to be represented in the form 

where a, and By are gradient vectors, then the basis of the mathematics must depend 
upon the integrability conditions (2.13)-if the equilibrium is to exist in a physically 
relevant geometry-and those in turn impose a geometrical structure on the system 
which in general depends upon the orthogonal group O(3) and an S3 having the precise 
value o f t  for its curvature. 

Of course, it is necessary that B” is representable in the above form firstly because 
we must have B ” , ,  = 0 and, secondly, because the hydrodynamic pressure P, in an 
equilibrium, will be a function of a and /3 due to the field lines of B” forming the 
invariant surfaces on which P takes constant values. 

There is, in addition, another more subtle way in which the integrability conditions 
(2.13) impose a structure on the equilibrium itself which, due to lack of space we have 
not gone into in detail here. Briefly, it can be shown that the equilibrium field vectors, 
which satisfy ( l . l ) ,  determine the set of infinitesimal transformations 

where 

These equations can also be derived from the system (2.9) or (2.12), when a, and f ly  
are gradient vectors and the pressure balance in (2.1) is true. In fact, they are the link 
between the geometry of the equilibrium field vectors and that of the S, because it is 
found that the quantities Pa/& P p / A  and w / A  must themselves be determined by the 
e ,  in order that the Jacobi identity 
m 

is true for the infinitesimal transformations to be integrable. So the equilibrium system 
is determined along with the conditions which dictate its geometrical structure in a 
flat space. 
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This intimate link between an M H D  equilibrium system and the geometry of the 
space in which it exists is seen in a simple way when it is realised that a Killing vector, 
satisfying Killing’s equation 

a”” = U, ” + V,l” = 0 

is a possible magnetic induction for an M H D  equilibrium system. In fact, i t  can be 
shown that the solutions of (2.1) which satisfy 

where U ”  is a Killing vector, include the cylindrical, axisymmetric toroidal and helical 
systems which have been found by ansatz and studied in detail already (e.g. Laing et 
a1 1959, Woolley 1975). 

Our final conclusion might well be of general interest. The basic results presented 
here really apply to a much wider class of systems than M H D  equilibria. For example, 
the vector B” in (2.3) can in principle represent any divergence-free vector field for 
which that description is applicable. Thus, B’ could describe an equilibrium current 
density-or any other vector field; it is only when the equilibrium conditions (2.1) 
have been satisfied that the field is particularised. 

If we define an almost-arbitrary divergence-free vector field as one for which the 
vectors in (2.13) are linearly independent, our main result amounts to a proof of the 
following theorem. 

Theorem. The geometry of an almost-arbitrary divergence-free vector field in a three- 
dimensional flat elliptic space is determined by the orthogonal group O(3) and the 
geometry of a three-dimensional Riemannian space having a constant curvature with 
the exact value of a .  
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